Overexpression of the Endothelial Protein C Receptor Is Detrimental during Pneumonia-Derived Gram-negative Sepsis (Melioidosis)
نویسندگان
چکیده
BACKGROUND The endothelial protein C receptor (EPCR) enhances anticoagulation by accelerating activation of protein C to activated protein C (APC) and mediates anti-inflammatory effects by facilitating APC-mediated signaling via protease activated receptor-1. We studied the role of EPCR in the host response during pneumonia-derived sepsis instigated by Burkholderia (B.) pseudomallei, the causative agent of melioidosis, a common form of community-acquired Gram-negative (pneumo)sepsis in South-East Asia. METHODOLOGY/PRINCIPAL FINDINGS Soluble EPCR was measured in plasma of patients with septic culture-proven melioidosis and healthy controls. Experimental melioidosis was induced by intranasal inoculation of B. pseudomallei in wild-type (WT) mice and mice with either EPCR-overexpression (Tie2-EPCR) or EPCR-deficiency (EPCR(-/-)). Mice were sacrificed after 24, 48 or 72 hours. Organs and plasma were harvested to measure colony forming units, cellular influxes, cytokine levels and coagulation parameters. Plasma EPCR-levels were higher in melioidosis patients than in healthy controls and associated with an increased mortality. Tie2-EPCR mice demonstrated enhanced bacterial growth and dissemination to distant organs during experimental melioidosis, accompanied by increased lung damage, neutrophil influx and cytokine production, and attenuated coagulation activation. EPCR(-/-) mice had an unremarkable response to B. pseudomallei infection as compared to WT mice, except for a difference in coagulation activation in plasma. CONCLUSION/SIGNIFICANCE Increased EPCR-levels correlate with accelerated mortality in patients with melioidosis. In mice, transgenic overexpression of EPCR aggravates outcome during Gram-negative pneumonia-derived sepsis caused by B. pseudomallei, while endogenous EPCR does not impact on the host response. These results add to a better understanding of the regulation of coagulation during severe (pneumo)sepsis.
منابع مشابه
A Thrombomodulin Mutation that Impairs Active Protein C Generation Is Detrimental in Severe Pneumonia-Derived Gram-Negative Sepsis (Melioidosis)
BACKGROUND During severe (pneumo)sepsis inflammatory and coagulation pathways become activated as part of the host immune response. Thrombomodulin (TM) is involved in a range of host defense mechanisms during infection and plays a pivotal role in activation of protein C (PC) into active protein C (APC). APC has both anticoagulant and anti-inflammatory properties. In this study we investigated t...
متن کاملUrokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis.
Urokinase receptor (urokinase-type plasminogen activator receptor [uPAR], CD87), a GPI-anchored protein, is considered to play an important role in inflammation and fibrinolysis. The Gram-negative bacterium Burkholderia pseudomallei is able to survive and replicate within leukocytes and causes melioidosis, an important cause of pneumonia-derived community-acquired sepsis in Southeast Asia. In t...
متن کاملHematopoietic but Not Endothelial Cell MyD88 Contributes to Host Defense during Gram-negative Pneumonia Derived Sepsis
Klebsiella pneumoniae is an important cause of sepsis. The common Toll-like receptor adapter myeloid differentiation primary response gene (MyD)88 is crucial for host defense against Klebsiella. Here we investigated the role of MyD88 in myeloid and endothelial cells during Klebsiella pneumosepsis. Mice deficient for MyD88 in myeloid (LysM-Myd88(-/-)) and myeloid plus endothelial (Tie2-Myd88(-/-...
متن کاملThe bug and the big heart --melioidotic pericardial effusion.
Melioidosis is an infection caused by Gram negative bacterium Burkholderia pseudomallei leading to abscesses in lungs, liver, spleen, musculoskeletal system, prostate and sepsis. We present a rare case of purulent pericardial effusion caused by melioidosis with concomitant pneumonia and splenic abscesses. The patient underwent pericardiocentesis and successfully recovered from cardiogenic and s...
متن کاملToll-Like Receptor 2 Impairs Host Defense in Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis)
BACKGROUND Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is e...
متن کامل